Degree reduction of Bezier curves and its error analysis
نویسندگان
چکیده
منابع مشابه
Approximating rational Bezier curves by constrained Bezier curves of arbitrary degree
In this paper, we propose a method to obtain a constrained approximation of a rational Bézier curve by a polynomial Bézier curve. This problem is reformulated as an approximation problem between two polynomial Bézier curves based on weighted least-squares method, where weight functions ρ(t) = ω(t) and ρ(t) = ω(t) are studied respectively. The efficiency of the proposed method is tested using so...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملBezier curves
i=0 aix , ai ∈ R. We will denote by πn the linear (vector) space of all such polynomials. The actual degree of p is the largest i for which ai is non-zero. The functions 1, x, . . . , x form a basis for πn, known as the monomial basis, and the dimension of the space πn is therefore n + 1. Bernstein polynomials are an alternative basis for πn, and are used to construct Bezier curves. The i-th Be...
متن کاملError Analysis for Approximation of Helix by Bi-conic and Bi-quadratic Bezier Curves
In this paper we approximate a cylindrical helix by biconic and bi-quadratic Bezier curves. Each approximation method is G end-points interpolation of the helix. We present a sharp upper bound of the Hausdorff distance between the helix and each approximation curve. We also show that the error bound has the approximation order three and monotone increases as the length of the helix increases. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics
سال: 1995
ISSN: 0334-2700,1839-4078
DOI: 10.1017/s0334270000007451